Sean Hardesty
About Sean Hardesty
Sean Hardesty is an R&D Computer Scientist specializing in Computational Physics Software Development at Sandia National Laboratories and a Scientific Developer at Z-Terra Inc.
Current Position at Sandia National Laboratories
Sean Hardesty is currently serving as an R&D Computer Scientist - Computational Physics Software Developer at Sandia National Laboratories. His role involves actively engaging in research and development within the field of computational physics, significantly contributing to software development efforts in this domain. Sean has been with the organization since 2018.
Role at Z-Terra Inc.
Since 2012, Sean Hardesty has been working at Z-Terra Inc. as a Scientific Developer. His responsibilities revolve around scientific computing, with a focus on developing and optimizing algorithms for geophysical data processing and interpretation.
Postdoctoral Research at Rice University
Sean Hardesty completed a Postdoctoral Research position at Rice University from 2010 to 2012. During his postdoctoral tenure, he was deeply involved in computational and applied mathematics research, contributing to various research projects and academic publications.
Educational Background and Ph.D. at Rice University
Sean Hardesty achieved his Doctor of Philosophy (Ph.D.) in Computational and Applied Mathematics from Rice University. He pursued this advanced degree from 2006 to 2010, gaining significant expertise in computational methods and applied mathematical theories.
Master's Degree at Rice University
From 2004 to 2006, Sean Hardesty attended Rice University to obtain his Master of Arts (M.A.) degree in Computational and Applied Mathematics. This advanced study further honed his skills in mathematical modeling and computational techniques.
Bachelor's Degree at California Institute of Technology
Sean Hardesty earned his Bachelor of Science (B.S.) degree in Physics from the California Institute of Technology. He studied at this prestigious institution from 2000 to 2004, building a strong foundation in physics that later supported his work in computational and applied mathematics.